Adapted from Audio-EQ-Cookbook.txt, by Robert Bristow, with permission.
All filter transfer functions were derived from analog prototypes (that are shown below for each equalizer (EQ) filter type) and had been digitized using the Bilinear Transform (BLT). BLT frequency warping has been taken into account for both significant frequency relocation (this is the normal "prewarping" that is necessary when using the BLT) and for bandwidth readjustment (since the bandwidth is compressed when mapped from analog to digital using the BLT).
First, given a biquad transfer function defined as:
This shows 6 coefficients instead of 5 so, depending on your
architecture, you will likely normalize
or:
The most straight forward implementation would be the "Direct Form 1"
(
This is probably both the best and the easiest method to implement in the 56K and other fixed-point or floating-point architectures with a double wide accumulator.
Begin with these user defined parameters:
Then compute a few intermediate variables:
FYI: The relationship between bandwidth and Q is
digital filter with BLT
or
analog filter prototype
The relationship between shelf slope and Q is
is a handy intermediate variable for shelving EQ filters.
Finally, compute the coefficients for whichever filter type you want:
(The analog prototypes, H(s), are shown for each filter type for normalized frequency.)
FYI: The bilinear transform (with compensation for frequency warping) substitutes:
(normalized)
and makes use of these trig identities:
resulting in these substitutions:
The factor:
is common to all terms in both numerator and denominator, can be factored out, and thus be left out in the substitutions above resulting in:
In addition, all terms, numerator and denominator, can be multiplied by a common
The biquad coefficient formulae above come out after a little simplification.
Special thanks to Robert Bristow-Johnson for creating the Audio EQ Cookbook and permitting its adaption and use for the Web Audio API.
Thanks to Peter Krautzberger for help in adapting these mathematical formulae to MathML, and to the whole MathJax team for making the JavaScript extension that makes the use of math on the web possible.
Thanks to Peter Jipsen, creator of ASCIIMathML, for making it easier to convert ASCII math notation to MathML.
Converted to using TeX formulas instead of MathML by Raymond Toy.